
A Vimlike Fluency: Daily Tips for Learning Vim
It is a truth universally acknowledged that one does not simply learn Vim. Vim's learning curve is notoriously steep, reputedly even vertical. So when a friend started learning it some time ago, I took it upon myself to send her occasional "tips of the day" to ease the ascent. I'm putting them up now in case they're helpful to others as they get their feet wet with Vim.
 There are plenty of really great Vim tutorials out there that I could highly recommend (like this comprehensive one, this interactive one, and this game, among innumerable others). But tutorials alone aren't enough, as not everyone has the time or the willingness to make it through them, and I suspect based on personal experience that many earnest students of Vim never get started, or lose patience and give up before they hit their stride. In practice, Vim is something that you learn over time in many different ways -- sometimes a deep dive, sometimes the guidance of an expert, and sometimes a tip from a friend. This blog series is more on the side of the latter two (without presuming to declare myself an expert!) -- bite-sized, progressive tips covering the principles and practice of Vim. These tips aren't going to teach you Vim; they assume that you are already trying to learn and are referring to resources online. But they might help you organize and solidify concepts as you go along. They may help you develop fluency.
 So here they are. There are about a dozen tips, in all, mostly beginner-oriented, and ranging from basic proficiency to more complex or "advanced" usage, all presented in easy-to-digest daily tips. They assume almost no prior knowledge of Vim, and are aimed at users of all "Vimlikes," whether Vim itself or one of the many clones (such as Emacs's Evil or Neovim). The tips are mostly independent of one another but are meant to be read in order. For instance, macros come at the end not because they're difficult but because they're easy -- too easy. I'll post them all probably over the next couple of weeks.
 Enjoy, and good luck! 👍
 	Introducing the Nouns
 	Writing Things
 	Actually Doing Things (Verbs)
 	The Truth About Nouns
 	Quantifiers
 	Search
 	Coordinates
 	Selecting Things
 	Scrolling
 	Going Places
 	Phrases
 	Living the High Life
 	Saying More (Macros)
 	Naming Things
 	A Mind Forever Vimming (Ex Mode)
 	Aggregate Operations
 	Bibliography and Next Steps

 Other Formats
 The series is also available as an ebook in EPUB format. This is an autogenerated version and unfortunately loses code formatting. I might work on a properly formatted version at some point (let me know if you would be interested in having this).
 Introducing the Nouns >

Vim Tip of the Day: Introducing the Nouns
Just as English and Japanese are languages to describe the rich world we live in, so is Vim a language to describe the comparatively sparse world of text. With normal languages, words need to be long to be unambiguous since there's so much stuff to describe in the real world. In Vim, words can be much shorter and still remain unambiguous. How much shorter? Well, it turns out, Vim words are each just a single letter long.
 Nouns are the stars of any language. They refer to the objects of the world, and are the subjects of every sentence. And in Vim, the basic nouns are:
 	characters -- h j k l
 	words -- w W b B e E
 	lines -- 0 $
 	sentences -- ()
 	and paragraphs -- { }

 Remember, each of these keystrokes represents a whole word in the Vim language. Try opening a file in Vim and navigate it by typing these commands to get a feel for them, while keeping the meanings of the words in mind.
 All Tips
 Writing Things >

Vim Tip of the Day: Writing Things
i / I -- insert before cursor / before beginning of linea / A -- insert or "append" after cursor / after end of lineo / O -- open new line below / above (obeys formatting and indenting)
 Each of these puts you in "Insert" mode where you can write things down. And of course, Escape always returns you to Normal mode. The more you use Vim, the more you'll feel "safe" returning to Normal mode, since you'll discover that Normal mode understands the text you are working with in the same way that you do. Normal mode gets you. It doesn't make it easy for you to quit, but that's because it cares.
 < Introducing the Nouns
 All Tips
 Actually Doing Things (Verbs) >

Vim Tip of the Day: Actually Doing Things (Verbs)
While many editors have "hotkeys" that do specific things (like C-c to copy, C-f for find), in Vim you typically form commands by composing sentences from verbs and nouns.
 You're probably familiar with the verbs c (change), d (delete), and y ("yank," i.e. copy), as in dw means "delete word" (try these with the various nouns if you aren't already familiar with them). Besides these three basic ones, there are many other such "operators" that function as verbs, including these:
 Change case -- g~ (for single characters or selections, you can just use ~ as a shorthand)Lowercase -- guUppercase -- gUAuto-indent -- =Decrease, increase indent -- < >Format -- gq (useful for comments in code and collating long wrapped lines)
 Just like with c, d, and y, repeating a verb twice “does what you mean,” for instance:<< >> indent line
 ⭐️ BONUS handy command:J join lines -- I use this one often!
 < Writing Things
 All Tips
 The Truth About Nouns >

Vim Tip of the Day: The Truth About Nouns
Nouns commonly refer to objects ("cat", "house"), but Vim nouns typically indicate navigations in connection with some object and aren't simple references (e.g. e = "end of the word", w = "start of the next word"). This is a clue that there's something funny about these "nouns." It turns out that the nouns we employ when talking about text -- words, paragraphs, and so on -- aren't exactly the nouns that Vim itself operates on, which is ranges. Whenever we describe an action via the Vim language in terms of nouns that make sense to us, Vim translates that into an implied range. For instance, when you say e, Vim understands that to mean, "from here to the end of the word." It then takes action on that range if you've also indicated a verb.
 Why do we care about this? For one thing, sometimes, the nouns you are interested in are simple references but can't be expressed as simple motions. You'd like to say "this paragraph," and Vim should understand that you mean, "this paragraph which the cursor is in right now, of course." In such cases, the noun we seek to manipulate is not expressible as a motion, but it is still a range, and Vim gives us a second kind of linguistic noun (in addition to motions) to indicate these, called "text objects."
 To use these, just point at the objects with the cursor, and then leverage the concepts "in" (i) and "around" (a) to manipulate them. For example, if you were referring to quoted text, in would indicate the text inside quotes, and around would indicate the text including the quotes. More examples:
 Change in word = ciwDelete around paragraph = dap (this one is handy!)Delete in paragraph = dip (can also be used to collapse whitespace)Yank (copy) sentence = yisChange in parens = cib or ci(— either open or close paren worksChange in box = ci[Change in quotes = ci"Select in parens = vib (we'll learn more about (v)isual mode later)Change in tag = citetc.
 Try other variations on your own!
 Note that we use p and s here for paragraph and sentence, respectively, since { and (refer to the actual delimiters in this case. Also, unlike the usual nouns (w, }, etc.), these "text objects" cannot be used on their own without verbs, since they aren't navigations.
 🌈 😌 👆
 < Actually Doing Things (Verbs)
 All Tips
 Quantifiers >

Vim Tip of the Day: Quantifiers
Usually, Vim's linguistic commands operate on a context inferred from the position of the cursor. But sometimes you may want to provide additional context for the operation. E.g. not this word but these words. Vim allows you to do this via quantifiers or "counts."
 d2w = delete two wordsd3b = delete the three preceding wordsc2} = change two paragraphsc2t. = change un(t)il the second period [we'll learn more about t soon]3j = go down three lines
 You can supply the quantifier either before or after the verb. E.g. 2ct. also works. That is, verb-quantifier-noun and quantifier-verb-noun are essentially equivalent.
 Note that going into insert mode and back into normal mode is treated as a single command in Vim. So you can also do:
 20ianybody there? [hit Esc]10i<item></item>[hit Enter][hit Esc]
 ✨ Bonus: Replace mode ✨
 R takes you into replace mode -- it’s a quicker option in cases where you want to replace part of a word with something else of the same length. Try it!
 < The Truth About Nouns
 All Tips
 Search >

Vim Tip of the Day: Search
While words, lines and paragraphs give us a way to refer to text in general, often, these "linguistic" nouns aren't fine-grained enough to do the thing we want. You may want to go not just to the next word, but to the next occurrence of a specific word, like "Oliver." You may not want to delete the entire line, you may just want to delete everything until the hyphen. In such cases, you are leveraging particular features of the text you are working with rather than features applicable to text in general. These cases all roughly fit under the rubric of search-based motions, the most general of which are:
 / ? -- go to next/previous occurrence of <whatever you type>n N -- go to next/previous occurrence of your last search term
 These search for regexes and not only literal strings, making them very expressive and useful. For instance, if you search for the regex ^$ (meaning "empty line") by typing /^$, then n and N now behave a lot like { and } -- in essence, you've just defined your own nouns! Although, as n and N change each time you do a search, these nouns are ephemeral. Here are some other search-based motions:
 * # -- go to next/previous occurrence of word under cursor [handy!]% -- go to matching paren, tag, or delimiterf F t T -- go to, i.e. (f)ind next/previous or find un(t)il next/previous occurrence of <character> in the current line, forwards or Backwards; , -- go to next/previous occurrence of last in-line search (e.g. f or t)
 The f and t searches may seem obscure, but they are very useful in cases where they capture the way in which you actually think about the editing action. "I want to change everything here until the hyphen." As with all things in Vim, expressing things conceptually instead of manually pays dividends (we'll see why later when we talk about "living the high life"). Also note that ; and , here play the role of new "ephemeral" nouns just like n and N do with regex search.
 Finally, remember that since any of these motions implies a range in the same way that the basic nouns do, these can be combined with verbs in the usual ways, e.g. ct; (Exercise: what does this Vim sentence mean?).
 < Quantifiers
 All Tips
 Coordinates >

Vim Tip of the Day: Coordinates
We saw that common Vim navigations are based on structure, while others are based on search. Still others are based on position. If you think about your "buffer" (i.e. the text you are working with) as an XY coordinate plane, a sea of latitudinal lines and longitudinal columns with characters occupying each position, Vim provides you ways to navigate that plane via what we'll call position-based or coordinate motions.
 	Go to line -- gg G 	Defaults to first and last, respectively

 	Go to column in current line -- | 	The in-line analogue to G, this defaults to 1st column, but can be used with a count, e.g. 79|.
 	Note this is the pipeline character.

 	Current status/position?1 -- C-g or gC-g 	The latter gives more details and can be used on selected regions too, i.e. visual mode, which we'll learn about next.

 	Go left/down/up/right -- h j k l (the usual)
 	Go to top / middle / bottom of page -- H M L
 	Go down / up "display lines" -- gj gk 	You'll need these when long lines are wrapped.

 	Go to first / last column in current line -- 0 $
 	Go to first / last column in "display line" -- g0 g$ 	Again, for wrapped lines.

 	Go to first / last non-blank column -- ^ g_

 Some Vim users find it useful to enable some form of visible line numbers and also column numbers to take advantage of coordinate motions. For instance, you might like to do something like d47G to delete everything from the current cursor position to line number 47 - which would be convenient (or would suggest itself at all) only if line numbers were readily visible.
 Structural, search-based, and coordinate motions are the core types of motions in Vim, which brings us to a unifying idea on the road to fluency:
 🌱 All motions are nouns.
 (Note that the converse isn't true -- as we learned earlier, some nouns are not motions).
 1 This isn't supported in Emacs Evil out of the box since C-g is the universal interrupt in Emacs. You could use this function together with the built-in count-words to mimic the functionality, if you'd like to have it.
 < Search
 All Tips
 Selecting Things >

Vim Tip of the Day: Selecting Things
Although you can do a lot with verbs like c, d, and y combined with the various nouns, it may often be desirable to get visual feedback prior to doing the operation. For this purpose, use v just like you would use a verb, i.e. along with a noun, to (v)isually select the area first (e.g. vis). Then hit c/d/y/whatever to do the operation on the selection.
 But visual mode isn’t just for feedback. By allowing you to indicate arbitrary pieces of text, it enables you to bypass Vim's linguistic facility to directly indicate an underlying Vim noun (i.e. a range). So it’s also a recourse for whenever something can’t be expressed in a simple linguistic way.
 	v -- visual mode (for arbitrary selection)
 	V -- visual line mode (select by line instead of by cursor) 	Useful for reliably copying blocks of text, e.g. functions or anything longer than a line. I tend to use this about as often as or more often than v.

 	C-v -- visual block mode (select by XY coordinates) 	Very useful, e.g. to add something at the start of or at the same position in every selected line. Has some overlapping usecases with multiple-cursors in other editors. I have seen even experienced vimmers be amazed by the things you can do with visual block mode.

 Once in visual mode, you can expand the selection by using any combination of nouns (e.g. ap, j }), and in either direction by using o to switch to the (o)ther direction.
 Visual mode is more expressive than normal linguistic editing, but at the cost of fluency. You could manually select the text inside a delimiter to delete it but it's better to say dib (or vibd, for feedback) instead. It should be used not as a crutch but as a recourse and an aid.
 < Coordinates
 All Tips
 Scrolling >

Vim Tip of the Day: Scrolling
[Note: "Alternative" Vim users (e.g. Emacs/Evil users), skip to the bottom]
 Today we're going to do something a little different. There are many excellent online resources for learning just about anything Vim-related. But as you gain more experience with Vim, it will become worthwhile to have at least basic familiarity with using Vim's built-in help features, since, in the spirit of efficiency, they can sometimes be the fastest way to learn about something (e.g. "What does the r key do?" :h r), and in the spirit of mastery (so I'm told), they can be the best way to learn about something in-depth.
 Since scrolling is a basic and well-bounded function, it's a good one to learn using the built-in help as a way to get oriented with this facility. But first, let's get a sense of what help looks like. Give this one a quick read:
 :help -- Learn about help
 A few more stops on the help tour:
 :help intro -- An introduction to Vim written by Bram Moolenaar himself:help tutor -- Learn about Vim's built-in "first steps" tutorial (which you should consider going through, if you haven't already):help user -- Vim user manual (narrative documentation):help reference-toc -- Vim reference manual (technical documentation)
 And now, without further ado, let's learn about scrolling! This should tell you everything you need:
 :h scrolling
 [SPOILER ALERT: you may want to go through the above steps before continuing]
 For the benefit of those who are learning Vim but are not actually using Vim itself but one of the many "Vimlikes"1 (such as Emacs's Evil or Sublime's Vintageous), and who don't have immediate access to Vim help, here are my go-to scrolling commands:
 Scroll window up / down half a page -- C-u C-dScroll forward / backward a full page -- C-f C-b (I prefer half-page since it preserves some context)Scroll window down / up one line (retaining cursor) -- C-e C-y (I use these often)Recenter view on cursor -- zz (note this is lowercase)
 Note that these simply move your "view" of the buffer -- they are not cursor motions that can be combined with verbs.
 1 Vimlike: A program that reflects the essence of Vim without necessarily being Vim itself. This term could be taken to encompass Vim, NeoVim, Emacs Evil, VSCodeVim, among others. The term was chosen to resemble roguelike.
 < Selecting Things
 All Tips
 Going Places >

Vim Tip of the Day: Going Places
We recently learned about position-based ways to navigate and reason about text. While these coordinate motions are a broad way to navigate to any point in your buffer at all, it's not often how we actually think about locations in the buffer. We don't usually want to go to "line 57 col 6," but we sometimes want to go to "that paragraph about Emacs" or "the section on Charles Dickens." That is, while we often want to return to various positions in the buffer, these positions aren't mere coordinates but places of interest.
 Vim has three different mechanisms to give names to positions in the buffer that we can leverage to capture our intuition about places. The first of these is called "marks," and allows you to name arbitrary positions in the buffer and return to them at any time. Vim also places some convenient marks on its own as you're editing, which you can leverage in the same way. The names for marks are single characters, like a.
 	Mark current position -- m<name> (e.g. ma) 	Uppercase marks (e.g. mA) preserve both position as well as filename, so you can use them to move across different buffers

 	Go to marked line -- '<name> (e.g. 'a)
 	Go to exact marked position -- `<name> (e.g. `a)
 	Go to most recent mark -- '' `` 	Vim automatically sets marks prior to each "jump." So these commands are a common way to "go back to where I just was before this"

 	Go backwards/forwards through marks in buffer -- [']' [`]`

 Vim also keeps track of the locations of the "changes" that you make in the file, allowing you to navigate places you've been in your recent editing activity:
 	Go to previous/next edit location -- g; g, (I use these often, e.g. "What was I doing before this?")

 Observe how g; and g, mirror a similar idea in ; and , which are used in f t searches, so you can think of them in the same way.
 And finally, Vim also keeps track of recent cursor positions, prior to any "jumps":
 	Jump back (o)ut to previous location / Jump back (i)n / Jump to definition -- C-o C-i C-] (useful for navigating code)

 Mark navigations within a buffer are motions, meaning they are nouns and can be combined with verbs. On the other hand, navigating changes and recent cursor positions are treated as "jumps" and are not nouns. They cannot be used with verbs. Lastly, unlike navigating (lowercase) marks and changes, jumps may move across files.
 < Scrolling
 All Tips
 Phrases >

Vim Tip of the Day: Phrases
We've learned to describe, navigate, and manipulate text with simple combinations of verbs, nouns, and quantifiers. Now let's take it further. In normal languages we compose individual words ("ball") to form simple phrases (for instance, "throw the ball" or "catch the ball"), much as we have been doing in Vim. But we also compose phrases together to form other phrases and sentences (for instance, "throw the ball upwards and then catch the ball"). Many of these composite notions are still simple and intuitive, and we express them with the same ease that we do the component notions.
 It's no different in Vim. While many common ideas can be expressed with the commands we've already seen, just like with any language, there are composite ideas that are also common and intuitive, and which are expressed as combinations of elementary commands. For instance, you may sometimes want to swap two words. "Swap" isn't a word in the Vim language, but this operation could be expressed in Vim as "delete this word and then paste it after the next one." Knowing this pattern can help you express the higher-level concept fluently without dwelling on the lower-level mechanics. Here are some other common phrases:
 xp -- swap character forwards (very common, e.g. to fix simple typos)Xp -- swap character backwardsdbwP -- swap word backwards (sometimes also dBWP or daWBP)dwwP -- swap word forwards (sometimes also dWWP or daWWP)ddp -- swap line forwardsddkP -- swap line backwards
 The pattern for swapping is the same for any noun, so paragraphs may be swapped in the same manner as words or letters. More phrases:
 yyp -- duplicate lineywP or ywwP or yaWP etc. -- duplicate wordyapP -- duplicate paragraph (and so on to duplicate anything)0d^ -- delete leading whitespace, i.e. at the start of the line (or ^d0)g_lD -- delete trailing whitespace, i.e. at the end of the line (that's an "l" as in London)0d^g_lD -- delete surrounding whitespace (within a line)dd{p / dd}P -- move line to top / bottom of paragraph or block (useful when working with lists)dd{p'' / dd}P'' -- move line to top / bottom of paragraph or block and returnVr= -- overwrite entire line with ='syypVr= -- underline heading (e.g. useful in reStructuredText documents)
 The important thing is not to memorize such phrases but to understand the ideas behind them, so that when the time comes you will know how to say them.
 See if you notice any other high-level operations that you do often, and what corresponding phrases might be worth remembering without thinking of them from scratch each time, and you’ll be well on your way to Vim mastery! 🕊
 < Going Places
 All Tips
 Living the High Life >

Vim Tip of the Day: Living the High Life
The signature of Vim-style editing is operating in terms of high-level abstractions in the world of text like words, paragraphs and delimiters, and expressing actions at this level without having to “descend” to actually doing the character-by-character and heavy-handed selection-based grunt work of manipulating the text. The fact that Vim thinks about text in the same way that you do, is the source of the power of linguistic editing.
 A major benefit of this is being able to refer to such linguistic commands as natural units. Every action you perform in Vim is a linguistic action -- e.g. “delete until the end of the line.” In contrast to other editors, your edit history is made up of such commands rather than low-level individually or arbitrarily-bounded edits. If you were to peek at it, it might look something like this:
 > insert the text "Grocery lisp"
 > replace character with t
 > insert "<item></item>"
 > change inside tag to "apples"
 > paste contents 10 times
 > change inside tag to "kale"
 > change word to "ice cream"
 > open a new line and insert "don't forget the eggs, half-and-half, and milk!"
 > change until comma to "bananas"
 > delete character
 Since your edit history is made up of such commands, it means that Vim’s undo u and redo C-r commands are much more useful than they might be in other editors. Each undo/redo action refers to a linguistic item in your edit history, rather than an elementary action like deleting a character. When you undo and redo, you are navigating through ideas you had, not the busy little details of typing.
 This rich underlying representation also enables one of Vim’s most useful features -- “repeat action” invoked by typing . (dot or period). This repeats the latest action in your edit history, which as we know could even be a complex action like “change surrounding parentheses to box brackets” (although this particular action requires the Vim surround plugin). In Emacs's Evil, the . command also allows you to repeat any recent command and not only the latest one, making it even more useful. This feature isn't present in other Vimlikes (including Vim itself) yet, as far as I am aware.
 This representation also underlies other, less-prominent but still useful features like g; and g, and gi to visit and interact with naturally-bounded locations in your edit history.
 Choosing between good habits and efficiency
 This tip shows us why it is a good habit to Escape to normal mode after each thing that you do, instead of lingering in insert mode. That makes the text you type into a bounded item in your edit history, which can be repeated or undone as needed. But it also represents a common criticism of Vim-style editing (especially from Emacs users) -- that escaping to Normal mode for simple edits incurs a cost in efficiency. For native Vim or NeoVim users, Insert mode provides a few facilities to avoid the efficiency cost here, such as C-o to momentarily execute a normal command without leaving insert mode (which also bounds the edits in the intuitively sensible way). For Emacs/Evil users, the other option here is to use native Emacs in place of Insert mode, so that simple edits can be done using familiar native optimizations. But when you've completed such edits, the place you'll want to rest is in Normal mode.
 < Phrases
 All Tips
 Saying More (Macros) >

Vim Tip of the Day: Saying More (Macros)
As we speak the Vim language, we come to have a renewed appreciation for the great diversity of things that the compositional nature of language enables us to express. Just imagine if you couldn't compose words to describe things in the real world, if there weren't any distinctions between verbs and nouns and adjectives! Why, everything we'd want to say would be a unique word that we'd just have to memorize! That would be tedious indeed. On the other hand, composing words that have linguistic roles allows us to say so much with so little.
 This is why we don't have special hotkeys to delete the rest of the line from the current cursor position, or to insert something at the beginning of the line. We just say d$ and ^i. How marvelous is the power of langua… wait a minute, we do have special hotkeys for these, they're D and I. And what about C! And x and s! And S and Y for that matter... they're everywhere. But… these aren't "linguistic," they're… hotkeys. And if I'm just using hotkeys to do things, what separates me from the hordes of editor hotkey button mashers? What even AM I?? 😱
 Whoa slow down there, take it easy, look, there's no need for an existential crisis. It turns out that in any language, when expressions are common enough, we naturally invent shorthands for them that function identically to their more verbose representations. For instance, if we find ourselves rotating tiny metal caps on bottles against resistance to open them often enough, we invent a new word to describe this. We just twist the cap off. Likewise, 0i and d$ are so common that we invent shorthands that mean the same thing as them. The key, defining quality of these shorthands is:
 "this means what that means"
 We don't need to even say what "that" means at all. As long as we form an equivalence to an existing expression in the language, we can rest assured that the shorthand will be understood.
 This habit, of defining new expressions that "mean the same thing as what that means" is called writing "macros" in programming languages in general, and in Vim in particular. And for the most common composite operations, Vim provides such shorthands or macros built-in. D means what d$ means. I means what ^i means. I and D and C and S don't follow linguistic structure because they are shorthands for phrases -- they are essentially macros that come built-in.
 While I and D express generally useful phrases, we often encounter specific situations where specialized phrases will be very common, or tasks where a specific, complex phrase will be repeated many times. We'd like to define our own shorthands, our own macros, to allow us to succinctly say these phrases, which we may find to be common by virtue of the tasks we work on, or by virtue of our unique ways of thinking. How do we define these shorthands?
 In general, by (1) describing how you would say it using the existing language, and (2) giving a name ("a new word") to this new expression. In Vim:
 	Remember a phrase, or "record a macro" -- q<name> 	As usual, a name can be any lowercase letter, like a

 Once you’ve started defining a macro by pressing q, Vim will indicate that it is “recording,” -- this means that it is going to remember whatever you type until you stop the macro definition by hitting q again. You are describing the new command using the existing Vim language. This includes any macros you may already have defined, although, unlike ordinary languages where new words and expressions may fulfill arbitrary linguistic roles (e.g. they could be used as verbs or nouns), Vim macros are more limited in that these can only be treated as full commands or "sentences," as they occupy a distinct namespace accessed by the prefix @.
 	Express a phrase, or "replay a macro" -- @<name>
 	Replay the last macro again -- @@

 When you’re done recording, whatever you typed becomes a new command with the name that you gave it. Execute it by typing @q (if you happened to name it q -- a convenient name I usually use), and if you want to repeat it, use @@. These accept quantifiers, too. Even if you don't use quantifiers often in general, with macros you will want to use them almost always, since repeating a complex action many times is precisely what macros are most commonly used for.
 Try it! Say you have this text:
 print hellowrite heydisplay bye
 … and you want to change it so that on each line, the second word is a string in parentheses, with an exclamation point to boot: print("hello!"). All you need to work with macros is q, @, and @@. Go wild!
 Finally, pause to reflect that macros give you a tremendous amount of flexibility. You don’t even need the Vim language anymore, if you can just record your actions and play them back at will. With a few basic commands and macros, you can do anything. But to forsake the Vim language at this stage would be to abandon the best thing about Vim macros -- the fact that they are linguistic, denoting complex phrases in a language which express complex ideas, is what makes them as useful as they are. The better you speak Vim, the more expressive and precise your macros can be. 🦉
 < Living the High Life
 All Tips
 Naming Things >

Vim Tip of the Day: Naming Things
They say that names are the beginning of abstraction. Giving something a name allows us to hold it in our minds, study it, understand it, use it, manipulate it, transform it. Without a name, we have nothing at all to go on. Consequently, as simple as it is, the ability to name and recall things is enormously useful. We've already seen that Vim allows you to name locations (marks), and commands (macros), and we've seen how useful these can be. In addition to these, and perhaps most often, you will also want to name content selected from the text you are working on.
 Vim allows you to name arbitrary pieces of text by putting them in "registers." You can prefix many common Vim commands with " to name the result of the command, or in Vim parlance to "put it in the register" with that name. For example:
 	"ayy = yank line and name it a
 	"ap = paste a
 	"ad} = delete paragraph and remember it as a
 	"Ayap = append this paragraph to the register a 	Note the capitalized name here. We name content using lowercase, and append to it if needed using uppercase. Vim interprets lowercase as defining and uppercase as appending to the same register.

 As a general guideline, if you're working with more than two pieces of text at the same time, it could be helpful to name at least one of them. For instance, let's say you want to put these words in alphabetical order:
 cherry durian banana apple elderberry
 One way to do this is to repeatedly apply the "swap" phrase we learned recently. Another way is to name these words while deleting them, so that you can paste them back in the right order using their names.
 Just as Vim maintains convenient standard marks based on your activity, so does it maintain convenient pieces of text that you may need in standard registers. One way to think about these context-aware registers is that they are pronouns -- names that stand in for nouns. We've learned that Vim has a grammar, and that this grammar usually expects verbs to be used together with nouns. How then does Vim know what to do with p? This is a verb, and yet, we've specified no noun in the context of which the verb must operate. Vim knows what to do because it maintains a register called " (the "unnamed" register) which always contains the most recent text copied or deleted. We can think of this register as the pronoun "it." When we say ddp Vim essentially treats it as ""dd""p, just as the sentence "Alisha found an old coin in the sand and took it," could also be read as "Alisha found an old coin in the sand that we can call `it,' and took it." Other "pronoun" registers, i.e. registers that automatically refer to text in the context of your activity, include "0 (last yanked), "1 - "9 (recently deleted -- note that the behavior of these varies across Vimlikes; for instance, in Vim these don't include "small" deletions, while Evil and possibly Neovim may include all deletions. Read your documentation to understand how these will work), "/ (last search term). There are more.
 Another common case where registers are handy is when there's some text that's special in some way, and needs to be referred to frequently. For instance, let's say a new hangout spot opened up in town and you want to move all your appointments there. We want to change every line here to show "Vim and Emac's" instead of the current venue.
 Meet at Southside
 10am at Reverie
 4:30 at Tied House
 See you at Yancy's
 Simply copying the new name and pasting over the old venues won't work, because each time you do so the replaced text will overwrite the text you want to paste which is in the "it" register. Instead, name the new venue (call it a, say) and then replace each venue with something like "ap after visually selecting it.
 While there are many types of names in Vim, note that these content "registers" are not the same as the location "marks," so you don't have to worry about conflating marks and yanked content. On the other hand, the content registers are the same ones used by macros. In other words, Vim sees macros simply as text, and they can be written and edited just like any other piece of text. This means that you could record a first attempt at a macro using q, try it out, and if it doesn't work as expected, paste the register into a buffer, edit it, yank it back into the register, try it again, debug it, and fix it so it works correctly. Just like writing code!1
 More Fun with Names
 We said earlier that naming is simple and yet powerful. An example of the power names give us can be seen in the ability to define persistent nouns. Earlier, we talked about how search functions in Vim give us "ephemeral" nouns. They're ephemeral because as soon as we search for something new, the noun we just defined is gone. What if we wanted to keep it around? The good news is, this is simple to do -- all we have to do is, you guessed it, give it a name! If the noun you happen to be interested in is occurrences of the pattern [^,]\+, then simply yank this text into a register. Now, if you type /C-r<name> (C-r can be used in any insertion state (including insert mode) to paste the contents of a register), this restores this motion noun to the n and N keys (and corresponding text objects to the keys gn and gN). This may be useful in text that is formatted in a unique way where the usual motion commands aren't as useful as some more tailored motions. For instance, in navigating a CSV, it could be handy to have the noun [^,]\+, which matches CSV elements.
 1 If your macro contains "non-printing" characters like Enter and Escape, refer to your documentation for how to handle this (e.g. in Vim proper, use C-v to insert such characters "literally." Evil and other Vimlike users, chime in in the comments if you know how to do this in your editor!).
 < Saying More (Macros)
 All Tips
 A Mind Forever Vimming (Ex Mode) >

A Mind Forever Vimming (Ex Mode)
Imagine if you had to edit a document that you couldn't see. All you could do was ask specific questions about it and issue succinct and unambiguous commands to manipulate it. It sounds like it would be maddening, but this is exactly what text editing was like in the old days, with editors like Ed and its successor, Ex, and as we will see, there was more method to it than madness. And it wasn't just text editors. A lot of things were like this back in those days, including computer games, the so-called "text adventures" or "interactive fiction." Just like Ed, such games didn't have access to modern graphical hardware, so they used something even better -- our minds. Let's make a digression into text adventures for a bit and experience what gaming was like once upon a time, to gain some perspective.
 In text adventure games, you are presented with descriptions of the world you are in, and you can issue commands to take actions, or ask specific questions to learn more about the world or about the things in it. The most basic of these questions is "look," or simply l for short. Upon typing l, you would be presented with a detailed description like this one1:
 This is a sandy section of beach. You can't help but notice that the colour of the sand is pure white. As you listen to waves crash on the beach, you notice the distinctive smell of the salty ocean. Peering westward through the fog you can make out the shape of a ship's mast. Old stone steps lead up the cliffs from here. You can see a red bottle, nestled in the sand. Inside the red bottle is: A note.

 You navigate the world by entering compass directions like w or "west", or "up" or "down" which are often abbreviated as u and d. And you could issue commands like this:
 > open bottleThe red bottle opens.> read note

 … and so on. :)
 The editor Ed (we will use Ed and Ex interchangeably) is a lot like this. You edit a document you can't see directly, but which you can ask questions about and issue commands to modify, and Ed can tell you what effect those changes have had. While you could learn "Ex mode" commands in the context of Vim, I think it's best if we leave Vim behind for now, and venture boldly down into the subterranean depths of Ex.
 Hit Q.
 This should put you in Ex mode, and it will tell you so. If it doesn't, then if you're a Vim user, type :unmap Q and try again. If you're a user of another Vimlike (such as Evil) that doesn't support persistent Ex mode, just go to a normal shell and type ex. Now, we should all be in Ex mode.
 e <filename> -- Edit file. Use any convenient file. If you like, copy the text of this entire tip into a new file, and use that filename here1 -- this takes you to the first line (that's the number one, not L)p -- "print" -- this is analogous to l or "look" in text adventures. It shows you the contents of the line you are on.
 You navigate the document by typing - or + to go up or down a line, or by entering a number to go directly to that line, or by typing / to go to the line containing the next occurrence of some term. Ex sees the world as made up of lines. You cannot make changes at a more fine-grained level than full lines. Therefore, all of these commands operate on lines, usually the current line.
 d -- delete (that is, delete the line)i -- insert before this linea -- insert after this line. -- done inserting (must be on a line by itself at the end of the text you enter)c -- changej -- joins/old/new -- substitute the first occurrence of old with new (on this line)
 It's like navigating the world of text in the dark with a flashlight. Explore for a while.
 More commands to try, just to demythologize them:
 m<line_no> -- move (the line) to line number line_no! -- execute shell commandnorm <commands> -- Execute Vim normal mode commands
 Some commands accept additional parameters at the end such as:
 s/old/new/g -- substitute all (and not only the first) occurrences of old with new (on this line)
 But in fact, Ex doesn't just operate on a specific line, rather, it operates on a range of lines. Just as Vim's underlying noun is a character range, Ex's underlying noun is a line range. You can prefix any command with a line range to have it operate on those lines. Each command also assumes a default line range if you don't specify one, which for most commands, as we've seen, is just the current line. Just like Vim (or the other way around!), Ex commands are composable.
 1,3 d to delete lines 1-3.3 i to insert a new line before line number 3.6,10 m20 move lines 6-10 to line 204,/hello/ c to change lines 4 through the next line containing hello. /hello/ is interpreted as a line address just like 4 is.
 and so on. Adding a space between the line range and the command is optional, and it is typically left out. Ex also recognizes convenient aliases for common line ranges:
 . -- current line (often this is assumed and you don't need to specify it)$ -- the last line of the file% -- all lines, a shorthand for 1,$
 So that for instance,
 %s/old/new/g means substitute all occurrences of old with new on all lines
 There's also the "global" addressing commands g and v (not to be confused with the g used as a parameter in the substitute command above!), which simply identify a set of lines that match a search pattern. Just like with any line range, you can compose these with any command.
 g/hello/p -- "print" all lines containing hello (this is how "grep" got its name -- g/re/p, since, as usual, the search term can be any regular expression)v/hello/p -- "print" all lines not containing hello (vrep never quite caught on)
 Parse the above as e.g. g/hello/ p to understand how this is simply an address range composed with a command.
 And with that, let's emerge into the light of the editor we know and love by typing:
 visual
 or, for short,
 vi (this is how vi got its name -- it's the visual interface built on top of the older ex/ed editor, enabling us to see the document we formerly could not see)
 Well that was quite a journey, but why did we bother? We spent a lot of time down in the Ex world, but in practical Vim usage you'd want to leverage Ex only occasionally -- this is what : does. Whenever you type :, you temporarily enter Ex mode to enter a single commmand. Now that you've been to that world, you're a resident. : is no longer a portal to a strange land but a portal to a familiar one. But, you may ask, why would we go there at all? Surely it is better to see the text than not to see it?
 Perhaps, but sometimes, the eye of the mind can see in the darkness what is obscured from sight by a million lights. While on the one hand the fact that Ex can reason only in terms of lines is a severe constraint, on the other, it is a great strength. Just like in elementary physics where we apply simple mechanical models to phenomena that are vastly more complex, and find such models to be enormously useful in the cases where the finer details of the phenomena don't matter to the essence of our purpose, in a similar manner, Ex mode can be seen as a simple model for the world of text encoding the idea that this world is made up of lines. When this model is the right one for our purposes, it allows us to do a great many things easily that would otherwise be completely intractable, even with all of the things we've learned about Vim. We will see common uses for Ex mode in the next tip, all of which fall under the rubric of aggregate operations.
 1 From Skullduggery by David Jewett (1986)
 < Naming Things
 All Tips
 Aggregate Operations >

Vim Tip of the Day: Aggregate Operations
Having returned from that one-dimensional land of Ex, we now know that it is another way of looking at our document, as a collection of lines, which is different from Vim's usual (more fine-grained, multifaceted) way of looking at it. We have also seen hints that this linear perspective could make it easier for us to make large-scale, sweeping changes to our document, changes that might take us a lot longer to do in Normal mode, if it is even feasible at all. In this tip, we will look at a few such categories where Ex mode is simply the right tool for the job.
 As we know that typing : in Vim momentarily takes us to Ex to execute a command, we will leave out the : prefix in this tip, and it should be understood that these commands would need a : prefix if executed while in normal mode. Additionally, all of these commands can be prefixed with any line range (such as, commonly, % for "all lines") to apply the command only to those lines. This line range can even be indicated visually using Visual Line selection prior to hitting :, which is a very common and useful way to do it. We will therefore also omit line ranges from the commands below, so that for instance, if you see s/old/new/g, you might execute an instance of it as :% s/old/new/g (with the space here being optional).
 Batch Processing Like It's '89
 Whenever you want to do something to "all of these" lines or "for all" instances that match some criteria, you are looking to do a batch operation. This is accomplished by either (1) prefixing an Ex command (like s) with a line range (like %, or implicitly via a visual selection), or (2) by using g (or v) to identify the lines using pattern-based selection instead. Here are some common batch operations:
 	Search and replace: s/old/new/g 	You can also specify additional parameters here, such as case (i)nsensitivity, and prompting to (c)onfirm each change, etc.
 	Recall that the unfortunately-named parameter g used here is unrelated to the g Ex command featuring in the remaining examples

 	Delete all lines matching or not matching a pattern: g/re/d or v/re/d 	e.g. g/^$/d deletes all empty lines
 	Remember that Ex mode's v is the in(v)erse of g and has nothing to do with visual selection in Normal mode

 	On all matching lines, substitute old with new: g/re/s/old/new/g 	g can be composed with any Ex command, and in this instance it is composed with s

 Since Vim defaults to using the last search term in all regex-based commands if you don't specify one, an efficient way to start your search-based batch operation is to hit * or # on a word of interest (which we learned about in Search) and then run the batch command as something like:
 g//d or s//new/g
 If you like grep, you'll love grevrep! Since g and v are commands that identify a selection of lines on which we may apply any command, we may use g or v themselves as the command to apply, which has the effect of narrowing the selection further. We can think of grevrep as an Ex "phrase" which means, "for all lines matching this but not matching that, do this."
 g/re/v/re/
 And of course, you can use any command on the final selection and not only p.
 "Multiple Cursors"
 Multiple cursors have become all the rage ever since Sublime Text introduced (or at least popularized) them a few years ago. While the paradigm is certainly fascinating and perhaps still underutilized, there's an alternative to it that comes out of the box with Vim. It is the norm(al) Ex command, which allows you to enter normal mode commands in Ex mode. Just think about that -- normal mode is an Ex command. This means that you can compose normal mode commands with Ex mode addressing, an extremely simple notion that is, partly for that very reason, incredibly useful. One may even call it ... sublime. 🥁
 If, say, you wanted to delete trailing whitespace on a line, you might use the "delete trailing whitespace" phrase g_lD that we learned earlier. Now to do it on a selection of lines (such as all lines), it's simply:
 norm g_lD
 With multiple cursors, you may also like to place cursors on every line matching a pattern instead of indicating a contiguous selection visually. In Vim you would use norm with g to accomplish the same thing. For instance, if you want to duplicate every line in the file that matches a pattern, try:
 g/re/ norm yyp
 which simply uses the "duplicate line" phrase that we already know. For more complicated operations, you could define a macro to do it on a single line, and then apply that macro globally using norm, the same as you would any other normal command.
 Another example, if you want to collapse all contiguous empty lines in a file to single lines:
 g/^$/norm dipO (or use ^\s*$ to also match blank lines in addition to empty lines. And that's an "O" as in "Oscar")
 By virtue of the expressiveness of regexes and the power of Vim's normal mode, there are many things you can do with Ex's "multiple cursors" (i.e. norm in combination with visual selection and g) that you cannot do with multiple cursors in other editors.
 But in a sense, if Vim can do some things better than other editors, that's not very interesting. We already know that. The interesting question is, is multiple cursors truly a different paradigm, one whose wholehearted inclusion in Vim could make Vim even better, even more expressive? And I don't mean norm which operates on batches sequentially. I mean cursors, operating independently with isolated and namespaced views of the world, each completely unaware of the others and each in full possession of all of the machinery of Vim -- change histories, registers, marks, everything -- cursors as first-class citizens. There is an undeniably intuitive quality to multiple cursors as a natural generalization of the cursor-based editing experience one is already familiar with. But beyond this intuitive quality, it has the other benefit of arbitrary placement. We can place such cursors anywhere, based on match criteria or not, for any reason or no reason -- it's easy. I am not aware of a way to do this with norm. There are plugins that provide multiple cursors in Vim, such as this one, but I admit I haven't tried them. If you have or if you decide to, share your experience in the comments!
 The Sieve of Ex-osthenes
 The move command (m) is handy for sifting through a document and collecting its lines into distinct piles based on whatever criteria we like. For instance, if you'd like to divide your file into two distinct parts based on some pattern, use:
 g/re/m$
 This says, "for every line matching this pattern, move it to the bottom of the file." Since these batch operations always occur sequentially, we cannot use 0 instead of $ here, because each successive matching line would be placed at the beginning of the file in sequence and this would have the effect of reversing the order of the lines (while still accomplishing the partitioning into two sets). This feature is handy, though, when reversing the order of some lines is just what we want to do, for instance:
 g/^/m0
 … reverses the entire file.
 In using m as a "sieve," we can divide the file into as many sets as we like, not just two. We simply repeat the same sieve operation on each created partition, using the last line of that partition instead of $, to further subdivide it into two, and so on.
 The Ultimate Verb
 Here's the thing about Vim. Since most schemes compose with one another (e.g. Normal nouns and verbs, visual selection and normal commands, Ex addresses and Normal commands, Ex addresses and Ex commands, Ex global and local commands …) and aren't just one-offs, each new thing you learn pays compounding dividends. Learning about regexes sounds boring, until you realize it can help you be more efficient at pretty much everything you do when you use Vim. Ex commands, there be dragons! But wait, you can use all the normal commands you already know in Ex mode too, and it's magic! Where does the composition end? It turns out that it doesn't, since it extends beyond the frontiers of Vim itself, into the broader shell environment.
 Vim integrates with the shell via the Ex commands r (read), w (write), and ! (transform, or "bang").
 You can use any shell command as a normal mode verb via !. For instance, !ip prompts you to enter a shell command to use to transform a paragraph. Although we can use it this way, the truth is, ! is actually implemented as an Ex command. This means that you can't use it on individual words or the contents of delimiters the way you can other normal verbs. ! operates only on full lines and sets of lines, even if you provide it something smaller. As with any normal mode verb, repeating it twice, !!, operates on the current line.
 As a verb, ! can be used with any shell command that accepts text input and produces text output. As text is the primary I/O paradigm in Unix, this includes a lot of built-in shell utilities, and it also includes any such executable program written by you or anybody else. Here are a few examples using handy built-in Unix utilities (equivalents likely exist for non-Unix platforms, too):
 !sort -- sort lines alphabetically!fold -s -w WIDTH -- wrap lines to WIDTH columns!cut -d ' ' -f1-2 -- retain the first two columns on lines containing columns of text separated by spaces!nl -- number the lines
 Note that these "bang" commands must be prefixed with a line range (or executed in the context of a visual selection) in order to function as verbs or transformations of text. Otherwise, they simply execute the shell command without passing it any input, and the output is simply printed rather than inserted into the buffer.
 We already know that Vim allows you to write to a file on disk using w. But w can also write input to shell commands. For instance, to find out how many characters, words, and lines are in the document,
 w !wc (note the space! w! without the space means overwrite file, which you wouldn't want to do accidentally)
 And this accepts a line range or visual selection like any Ex command (e.g. "Translate this selection into Spanish," if you happen to have a language translation shell utility). Likewise, the r command allows you to read the contents of any file into the current document. For instance,
 r otherfile.txt
 … inserts the contents of otherfile.txt beginning at the current line.
 And just like w, r can also read in the output of a shell command.
 r !date
 ... inserts the system date at the current line.
 When you know a way to do something with a shell utility and don't immediately know how to do it in Vim natively, don't hesitate to use !.
 < A Mind Forever Vimming (Ex Mode)
 All Tips
 Bibliography and Next Steps >

A Vimlike Fluency: Bibliography and Next Steps
Acknowledgements
 The original recipient of these tips was Ariana Promessi, who also edited and contributed to the final versions on this site. She in particular distilled the notion of "ephemeral nouns" which make their first appearance in the tip on Search.
 Feedback from the r/vim community on Reddit also helped to improve the quality of the tips. There were some useful suggestions in particular from user /u/abraxasknister whose prodding influenced the approach taken in the tip on Scrolling, and also inspired me to come up with the term vimlike to describe the class of editor whose users form the audience for these tips.
 Reader srea pointed out the text objects gn and gN which I didn't know about. For reasons of symmetry it may be best to include these in the tip on Search, an inclusion I may make in a future revision.
 Bibliography
 For every enterprising blogger who writes a few articles sharing valuable things they've learned over the years from sources usually unknown even to themselves, untold numbers of others labor unseen in the mines to create this value made visible on the surface. Everyone deserves to be recognized for the value they contribute, in ways small and large, and the truth is, a bibliography doesn't come remotely close to doing this justice or even begin to reckon with the true scale and import of the problem to be solved. I've written elsewhere about better ways that we might do this, but until we get there, here are some resources and plugins that I can wholeheartedly recommend for further development. If you can think of others that should be included, just point them out in the comments and I am happy to add them.
 Vim as a Language
 	You Don't Grok Vi 	a classic StackOverflow post by Jim Dennis
 	mentions registers as objects in the grammatical sense

 	Learn to speak vim — verbs, nouns, and modifiers!
 	VimSpeak -- this looks very cool
 	While a picture is worth a thousand words, it could also be said that a formal grammar is worth a thousand explanations. Here are some worthy attempts at describing Vim's grammar. 	Vim Grammar 	This points out that the w and W nouns "modified" in text objects like iw and aW are not the same as the nouns w and W indicated in motions. We can understand this in the context of Vim's underlying noun of character ranges.

 	Vim Normal Mode Grammar 	very interesting article
 	this one attempts to treat 0 $ etc as "motion verbs", whereas the present series treats these as ways to indicate nouns, making the distinction that verbs are transformations of the text rather than of the perspective (cursor or view)

 	A Grammar for Vim's Normal Mode 	My own rough attempt that I made in the course of writing these tips. It encodes some of the things covered here, such as treatment of C and D etc. as built-in macros.

 Vimlikes
 I'm including here editors or extensions for other platforms whose stated goal is full emulation of Vim. I have not used many of these, though, so please comment if you have an opinion about them or know of others that should be included.
 	Vim
 	Neovim
 	Emacs Evil
 	VSCodeVim
 	Sublime NeoVintageous
 	Atom vim-mode-plus
 	Personally, I use 	Emacs/Evil for coding, tinkering, the kitchen sink
 	MacVim for notetaking, organization, LaTeX, mission-critical stuff
 	Terminal Vim for one-off and remote edits
 	I admire from afar: JetBrains products

 Beginner
 	Online interactive tutorial
 	Vim Adventures -- I love this concept
 	If you're just getting started setting up a vimrc file, this video by ThePrimeagen may be a good place to start
 	Another interactive tutorial
 	Vimtronner 	This looks awesome.

 Further Development
 	Advice from Bram himself
 	Another way to edit registers
 	Operator, the true power of Vim
 	Using Ex mode as a REPL for vimscript
 	Learn Vimscript the Hard Way
 	Text processing Unix commands
 	Some tips on text objects
 	An excellent advanced tutorial
 	Making Things Flow

 Plugins
 In general, for anything that extends your Normal mode vocab (e.g. new noun (motion + text object), new verb, etc.), adding it is a no-brainer. For other stuff, it's a matter of personal preference.
 	A community-curated collection of text objects
 	VimAwesome -- a hub for plugins, very well done
 	Useful plugins 	surround
 	repeat
 	targets
 	commentary
 	Gundo

 	Vimwiki 	my personal, entirely undocumented, organizing tool is based on Vimwiki

 	Tagbar
 	visualstar 	to search for a visual selection with *

 	matchit 	for % to match tags

 	YankRing 	I like the yank ring functionality in Emacs, this plugin apparently provides it for Vim

 Blogs, Tips, Etc.
 	Usevim
 	Vim Tips wiki
 	Arabesque
 	Hillel Wayne
 	Vim Drops
 	Kana the Wizard
 	Tim Pope
 	Vimways

 Standard Resources
 	Community
 	Mailing Lists
 	More on Vim Built-in Help 	How to Use Vim’s Built-in Help
 	Vim's Built-in Help

 	Practical Vim 	I haven't had a chance to read this book but I've seen it highly recommended by many.
 	There's also Vimcasts, a video channel by the same author

 Interesting
 	VimGolf 	An essential Vim pastime!
 	Unfortunately, it appears the site has been experiencing issues of late, and it sounds like they could use help with MongoDB to get it back up

 	Vim has apparently raised over a million euro for charity. That's pretty cool.
 	A great interview with Bill Joy (one of the creators of Vi) from 1984
 	In case you didn't know, Ed is the standard text editor

 "License"
 This work is "part of the world." You are free to do whatever you like with it and it isn't owned by anybody, not even the creators. Attribution would be appreciated and is a valuable contribution in itself, but it is not strictly necessary nor required. If you'd like to learn more about this way of doing things and how it could lead to a peaceful, efficient, and creative world, and how you can help, visit drym.org.
 < Aggregate Operations
 All Tips

OEBPS/epub3toc.xhtml

		
			Table of Contents

		
		
			
						
					A Vimlike Fluency: Daily Tips for Learning Vim
				

						
					Vim Tip of the Day: Introducing the Nouns
				

						
					Vim Tip of the Day: Writing Things
				

						
					Vim Tip of the Day: Actually Doing Things (Verbs)
				

						
					Vim Tip of the Day: The Truth About Nouns
				

						
					Vim Tip of the Day: Quantifiers
				

						
					Vim Tip of the Day: Search
				

						
					Vim Tip of the Day: Coordinates
				

						
					Vim Tip of the Day: Selecting Things
				

						
					Vim Tip of the Day: Scrolling
				

						
					Vim Tip of the Day: Going Places
				

						
					Vim Tip of the Day: Phrases
				

						
					Vim Tip of the Day: Living the High Life
				

						
					Vim Tip of the Day: Saying More (Macros)
				

						
					Vim Tip of the Day: Naming Things
				

						
					A Mind Forever Vimming (Ex Mode)
				

						
					Vim Tip of the Day: Aggregate Operations
				

						
					A Vimlike Fluency: Bibliography and Next Steps
				

			

		
	

